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Abstract—We consider a wireless sensor network (WSN) where
each sensor node samples a random signal and transmits the
result to an access point (AP)/fusion center (FC). The WSN op-
erates under the sub-1GHz IEEE 802.11ah MAC/PHY standard
and it also includes a relay node that may be used for forwarding
the data to the FC. The FC collects the data from the sensors
and the relay and estimates the random signal of each sensor
with the linear weighted least squares (WLS) algorithm. The
objective of the FC is to minimize the power consumption of the
sensors subject to an MSE distortion constraint by selecting the
use of the relay for the sensors that need it. We cast the power
minimization problem as a mixed integer linear program (MILP).
Our detailed simulation results indicate the efficacy of our scheme
under a path loss channel model and randomly deployed sensor
populations, while the performance gains are increased even more
for denser sensor population. Since the IEEE 802.11ah standard
leaves open aspects related to the relay selection process for IEEE
802.11ah-based WSNs, our system can be readily implemented
in this emerging class of WSNs.

Index Terms—Wireless sensor networks, cooperative systems,
parameter estimation, optimization, Internet of Things, Smart
Grid, IEEE 802.11ah.

I. INTRODUCTION

The basic task of any wireless sensor deployed for an
Internet of Things (IoT) application is to measure a parameter
of interest and transmit it through a wireless link to an
access point for storage or further processing. When multiple
sensors collect data, then the observations collected from this
wireless sensor network (WSN) are processed by a fusion
center (FC) that combines them to improve the estimation
accuracy of the random signal. In these WSNs one of the
most well-known problems is their power limitation since they
are usually deployed without connection to a grid-connected
power source. This creates a significant problem since a
lower transmission power also minimizes the probability of
correct packet decoding at the FC. Eventually, with fewer
observations of the signal at the FC, the mean square error
(MSE) distortion of the estimation is increased leading to poor
quality estimates [1].

In recent years several new problems have been adding up
for WSNs and are generated by real-life requirements and also
technical novelties of newer standards. The first significant
problem is that the increasing adoption of IoT applications
means that the population of sensors that are present within
a specific geographic area is increased rapidly. When a sub-
1GHz physical layer (PHY) is adopted like in the emerging
WSN standard IEEE 802.11ah [2], the transmission range of
the wireless device is extended to more than a kilometer even
with transmission power levels that are well within the limit
posed by regulating agencies. The two previous observations
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Fig. 1. In our system model a wireless sensor network is deployed for
estimating the random vector θ. A single relay is deployed for improving
the power efficiency of the sensors. The sensors use the IEEE 802.11ah MAC
to contend for channel access.

mean that the number of sensors that a single access point
(AP) is expected to serve will be typically very high (can
be more than 6000 in IEEE 802.11ah [2]). The performance
implications of the previous situation is that the high number
of nodes means higher contention for the medium and so
fewer bandwidth resources. Eventually the sensor node has
to use higher transmission power to ensure that the fewer
transmission opportunities that it has are received at the FC.
Otherwise the required MSE may not be achieved.

A second problem is that their is an absence of data
correlation across independent sensor measurements, and con-
sequently no smart techniques like in-network processing [3]
can be used to reduce the communication bandwidth. This
is the case for example is smart monitoring applications
(electricity, gas, water, home, health, building, e.t.c.) where
the parameters of an autonomous sensor are collected and are
typically independent of the neighboring devices. Hence, all
the data from a sensor have to be communicated and they can
only be locally processed.

Given the previous problems, i.e., a large population of
WSN nodes have to communicate a wealth of uncorrelated
data, the question is how to achieve a prescribed level of MSE
for the signal measured by each sensor, without requiring from
the sensors to use excessive power levels. More specifically, in
this paper we are concerned with the problem of minimizing
the power of the IEEE 802.11ah-based WSN when several
independent random parameters are estimated. Our system
model that is illustrated in Fig. 1 considers also the use of a
relay for data forwarding to the AP [2]. The intuition is that the
introduction of a relay can improve the reliability of wireless
transmission, limiting thus the need for additional bandwidth,
channel accesses, and of course transmission power from the
sensors. This relay-based topology has recently been adopted



in the emerging IEEE 802.11ah standard. However, the deci-
sion where a relay is actually used by a sensor is an aspect
currently not specified in the standard and is open to the system
implementation. Overall, our framework can be used as a tool
that can allow the operator to configure the IEEE 802.11ah-
based WSN in a power-efficient manner by deploying relays.

Related Work. Power consumption and its interplay with
the estimation accuracy in WSNs has attracted significant
research efforts. Linear distributed estimation of correlated
data under power or MSE constraints has been studied thor-
oughly in the literature [4] and in several subsequent works
after that. In [5] the authors added the element of noisy
fusion center and they designed optimal pre-coding matrices
(filters) for minimizing MSE. In [6] the authors proposed an
opportunistic protocol for the problem of power allocation and
sensor selection under an MSE constraint when the sensors
were interconnected through a star topology. The problem of
MSE distortion reduction for Gaussian sources under power
and rate constraints was studied in [7]. Sensor selection has
also been thoroughly considered with the objective of power
minimization in [8]. However, all the previous works did not
consider node cooperation through relays. The potential to use
relays was studied in [9]. In that work the authors studied
two-hop multi-sensor relay strategies that minimize the MSE
subject to either local or global power constraints. That work
considered a relay network with several relays, one sensor, and
one destination. More recently, in [10] the authors proposed a
power allocation framework for an estimation problem similar
to the one defined in this paper. Relay nodes were introduced
to form complex branch, tree, and linear topologies. In the
most generic topology the authors considered that sensor nodes
were assigned statically to relay nodes forming thus a well-
structured hierarchical tree topology.

The concrete contributions of this paper with respect to the
related work are the following:

• A cross-layer MSE distortion model for a linear estima-
tion algorithm that unlike related work takes into account
both the impact of channel contention in IEEE 802.11ah,
and the use of cooperative relay-based transmissions.

• An optimization framework for power-optimized linear
estimation in a WSN that operates under IEEE 802.11ah,
and an associated low complexity solution algorithm.

II. SYSTEM MODEL AND ASSUMPTIONS

Network Model and Objective. Our objective is to esti-
mate uncorrelated random signals, compactly described as the
vector θ = [θ1 ... θN ]T , through a WSN of N nodes that
belong in the set N . For signal θi collected at sensor i our
goal is to ensure that the MSE is not more than dMAX

i . We
assume that the observations are uncorrelated since the sensors
sample independent data in a large geographic area (Fig. 1).
There is a FC, and also a single relay node deployed within the
sensor population. The relay may be used by a sensor to meet
the desired MSE. Note that this WSN model may represent a
part of a larger deployment of sensors that may be similarly
distributed and use local relays.

Sampling and Quantization. Each sensor collects several
observations (samples) during a period of T seconds that
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Fig. 2. Cooperative protocol. The sensor will use either cooperative transmis-
sion (case 1) or direct transmission (case 2) and our optimization framework
is responsible for this decision.

depends on the monitored phenomenon. The input signal to the
quantizer of sensor i is an analog sample θi+zi that consists of
the data and the AWGN sampling noise with zi ∼ N (0, σ2

zi).
After quantization the signal is:

yi = Q(θi + zi) = θi + zi + qi (1)

The quantization noise qi across sensors is independent.
From (1) we see that the variance of the quantized signal at
sensor i is:

σ2
yi = σ2

θi + σ2
zi + σ2

qi

For a quantization with Ri bits/sample, the variance of the
quantization noise (or the distortion), under the use of a
uniform probabilistic quantizer Q(·) [11] at sensor i is:

σ2
qi =

A2

(2Ri − 1)2
(2)

In the above, 2A is the range of the sensed signal.
Modulation and Transmission. We assume that the sensor

collects K source samples of the form given in (1) and creates
a packet of KRi bits. Each sensor i uses a modulation and cod-
ing scheme (MCS) scheme that is characterized by a spectral
efficiency of Ri bits/symbol. This parameter takes into account
the use of a capacity-achieving AWGN code. The mapping of
the quantized digital samples to digital baseband symbols after
channel coding and digital modulation is denoted as follows:

xdi = CC-PSK(yi) (3)

The transmission of xdi takes place over a wireless link h
with flat quasi-static Rayleigh fading. The average channel
gain is affected by the path loss (distance between the sensors,
the FC, and the relay) and its precise average value will be
defined in our performance evaluation section. Also Pi is the
transmit power at sensor i. Based on our previous discussion,
the baseband representation of the received signal at the FC
from sensor i is

yi,fc =
√
Pixdihi,fc + wfc, (4)

with σ2
xdi

=1, ∀i ∈ N , and wfc ∼ N (0, σ2) is the receiver
noise. The signal transmitted from the source to the relay and
the relay to the FC can be written similarly. For the decoded
signal of sensor i the relay uses power Pr.

IEEE 802.11ah. To transmit the digital packet to the FC
each node must access the channel. It does so with the
IEEE 802.11ah [2], for which we model its core PHY/MAC
functionalities in our overall system model. Regarding the
802.11ah PHY features, it uses the lower MCSs of IEEE
802.11ac. BPSK with code rate 1

2 was adopted to ensure long
range and this was the selected to be the value for Ri. At the



MAC the standard uses the distributed coordination function
(DCF) for contenting for channel access [2].

Relay Functionality. Once a node obtains access to the
channel transmits the packet in one slot and in subsequent slot
it may use the relay. The role of the relay is simple since it only
decodes and forwards (DF) the digital transmitted data. This
type of relay functionality is specified in the IEEE 802.11ah
standard [2].

Paper Notation. Regarding the paper notation matrices
are denoted with bold capital letters, i.e. A. Bold lowercase
denote vectors. The matrices AT , AH ,A∗, are the transpose,
Hermitian, and conjugate of A. Also Tr(·) is the trace of a
matrix.

III. CROSS-LAYER DISTORTION MODEL FOR
COOPERATIVE SENSOR DATA TRANSMISSION WITH IEEE

802.11AH

A. Cooperative Decode-and-Forward Protocol Model

To reach our final goal, which is to identify whether the use
of the relay is needed for achieving a certain distortion thresh-
old, we have to model first the performance of the cooperative
DF protocol among other aspects of our system. To do that
we have to calculate the probability that a transmission with
this protocol fails. We follow an information-theory driven
approach. In particular, since the communication channel is
quasi-static Rayleigh fading, the reception of a packet cannot
be guaranteed with probability 1. Hence, the so-called outage
probability of this cooperative transmission must be calculated
that indicates the average number of decoded packets [12]. The
outage probability for a point-to-point link between sensor i
and FC is

Pouti,fc = Pr{log2(1 +
Pi|hi,fc|2

σ2
) ≤ Ri}

= 1− exp(
−(2Ri − 1)

Pi E[|hi,fc|2]/σ2
), (5)

where σ2 is the variance of the AWGN noise at the re-
ceiver. The closed-form result is because |hi,fc| is Rayleigh
distributed. Similar expressions apply for all the point-to-
point links. Hence, the end-to-end outage probability with our
protocol is:

Pout(i, Pi, Pri) = Pouti,fc
(

Pouti,r+Poutr,fc(1−Pouti,r)
)

(6)

The above is true because the direct transmission from the
sensor to the FC and the transmission from the relay are
independent, and also because if the transmission from the
sensor to the relay fails, then the cooperative transmission
along that path fails competely. By combining the different
versions of (5) and also (6), we obtain the final expression
for the end-to-end outage probability that depends on several
parameters.

Even though in our outage expression only few parameters
are involved, the resulting MSE of our estimation algorithm
depends on other parameters of our network model. As we
will see in the next paragraph in detail, the MSE distortion
performance depends on the number of available observations
collected over a period T .

B. Modeling the Number of Observations
Before we move on and calculate the MSE of the estimation

algorithm used at the FC, we have to calculate the average
number of observations that the algorithm receives in a specific
time period. This number will affect directly the MSE while
the precise analytical formula will be derived in the next
section. However, calculating the outage probability in (6)
is not enough. A sensor operating under the DCF mode in
IEEE 802.11ah will share the channel with the remaining
nodes. To calculate the achievable throughput we use the
model in [13] that has also been validated in practice, and
also considers unsaturated traffic input at each node. More
specifically, with MCS Ri, a packet of KRi bits that is
produced every T sec, and N contending nodes we denote
the throughput as SDCF(Ri,K,N, T ) (equation 10 in [13]).
Other 802.11-specific timing parameters can be found in [13].
Note that the previous model considers only the impact of
collisions in the throughput. However, unlike the related work
we consider packet losses due to errors according to (6). The
previous discussion leads to the following expression for the
average number of observations available at the FC for sensor
i:

Mrec(i) = SDCF(Ri,K,N, T ) · (1− Pout(i, Pi, Pr))︸ ︷︷ ︸
total effective rate (bps) for sensor i

· T
Ri

(7)

The last part of the formula above is very important since
we multiply with the period T (sec) that we exercise the
estimation, and we divide with Ri (bits/observation). Note that
we did not model any retransmission scheme, while this can
be accomplished methodologies such as the one found in [14].
Hence, the final result is the average number of samples that
we receive over these T seconds.

C. MSE Distortion Model
At this point we have calculated how many observations

of the random signal θi the FC has received by taking into
account the compression/quantization at the source, the use of
cooperative relay-based communication in (6), and the use of
DCF channel access from IEEE 802.11ah MAC in (7). The
final step is to convert (7) to the actual MSE distortion.

In our system we assume no knowledge of the prior data
distribution and so we use the weighted leat squares (WLS)
linear estimator which is the best linear unbiased estimator
(BLUE) for the Bayesian linear data model we consider in this
paper [1]. Recall also that the data from the different sensors
are uncorrelated because the sensors are located at large physi-
cal distances. This last assumption means that the distortion of
the estimated data for one sensor will be independent from the
others. Hence, the estimation accuracy for the random signal
monitored by one sensor will be improved only by obtaining
more measurements from that sensor.

To develop our model let us denote with c=1, a 1×Mrec(i)
matrix that expresses the number of available Mrec(i) obser-
vations after decoding in the end of the period T . Hence, the
Bayesian linear data model for the data of one independent
sensor is

yi = cθi + zi + qi︸ ︷︷ ︸
vi

(8)



where vi is the combined AWGN sampling and quantization
noise for several observations of our signal θi. Let us now
consider the WLS estimator according to our previous data
model [1]:

θ̂i,WLS = (cHΣ−1
vi
c)−1cHΣ−1

vi
yi (9)

To calculate the MSE, first we calculate the covariance matrix
of the error of the WLS estimator. Formally, we know that the
covariance matrix for the error of the WLS estimator is [1]

Σe,i = (cHΣ−1
vi
c)−1, (10)

where each diagonal element in the matrix Σvi can be easily
shown to have the same value equal to:

[Σvi
]k,k = σ2

zi + σ2
qi (11)

But in this case the error matrix in (10) is actually a scalar
since we estimate a single variable. Hence, the total MSE from
using Mrec(i) measurements is the trace of the above error
matrix in (10). Thus, it is:

MSE(i) = Tr(Σe,i) =
(Mrec(i)∑

k=1

1

σ2
zi + σ2

qi

)−1

=
σ2
zi + σ2

qi

Mrec(i)
(12)

This last expression is combined with (7) to obtain the final
closed-form MSE result.

IV. OPTIMIZATION FORMULATIONS

We consider the MSE expression obtained from our analysis
as one of the constraints to our optimization problem while the
power consumption is the optimization objective. We desire
to minimize the sensor power which means that it might
be possible that the use of the relay is not needed since
the additional MSE improvement is marginal and the MSE
constraint can be satisfied without extra power consumption.
To proceed with the formal definition of our problem we
define xi as a binary variable that indicates whether sensor
i transmits through the relay. Thus, the optimization variables
for the problem we define are Pi and xi, and in vector form
x =

(
xi ∈ {0, 1} : i ∈ {1, ..., N}

)
, P =

(
0 ≤ Pi ≤ PMAX :

i ∈ {1, ..., N}
)
. The objective is to minimize the sum of the

power consumed at the sensors and the relay subject to the
same individual MSE constrains:

min
P ,x

N∑
i=1

(Pi + xiPr)

subject to
σ2
zi + σ2

qi

Mrec(i)
≤ dMAX

i , ∀i ∈ N (C1)

0 ≤ Pi ≤ PMAX, ∀i ∈ N (C2)

Note in the above formulation that there is no need for a
constraint that ensures that the relay is used by only one sensor.
The reason is that the IEEE 802.11ah MAC ensures orthogonal
access.

A. Solution and Implementation

Regarding the sensor parameters that are needed for solving
the problem note that most important ones are the average
channel between the sensor, the FC, and the relay. This means
that they can be estimated at the FC from measurements from

these devices during long time periods. The variance of the
AWGN sampling noise can similarly be available at the FC
since it is device-specific. This means that the problem can be
solved at the FC without the need for explicitly communicating
information from the sensors. Now the problem formulation
clearly constitutes a non-convex mixed integer non-linear
programs (MINLP). However, it can be decoupled across the
sensors since there is no coupling constraint. The algorithm
we follow for solving the problem is to set first Pr=0 and
start increasing in steps Pi until the desired MSE threshold is
met. We also set Pr 6=0 and follow the same procedure for
increasing Pi. From the two solutions we select the one that
gives the lower Pi + Pr. This is communicated to the sensor.

V. PERFORMANCE EVALUATION

We present simulation results for evaluating the performance
of our approach. The system parameters are set as follows
σ2
θi

=1,∀ i ∈ N , σ2=10−4, R̄i=8 bits/source sample, A=1
Volt. We also set T=10 seconds, i.e., we assume that the
phenomenon changes every 10 seconds. We assume a path
loss channel and so E[h2i,j ] = 1/dnorm(i, j)a, where a is the
path loss exponent set equal to 3, and dnorm(i, j) is the distance
between nodes i, j normalized in the range from 0 to 1Km. The
timing parameters of the IEEE 802.11ah MAC were obtained
from the current standard [2]. Also, we explained earlier the
most robust MCS is selected, i.e., BPSK modulation with a
coding rate of 1

2 . We also evaluate two different flavors of our
optimization namely one where the relay is always selected,
i.e., it is removed from the objective since we do not consider
its power consumption incurs any cost (e.g., it is connected
to the power grid). A second system where both the sensor
and the relay power are part of the objective as in our main
formulation.

A. Results for a Single Sensor

For this first scenario we evaluate the performance of a
single sensor since the solution for this case is the fundamental
building block of our complete optimization. At a distance
0.5Km from the FC we place a relay. In the straight line
defined between the FC and the relay, we check different
sensor locations: The sensor locations in the left of the x
axis are close to the FC while when we move to the right
the sensor approaches the relay (located at 0.5), and after that
point it moves away from both of these devices.

In Fig. 3(a) the results for the case that relay is always used
and their is no cost in doing so. When the sensor approaches
very close to the relay, then the required power from the sensor
is reduced considerably, leading to this ”dip” in the power
consumption, due to the fact that the sensor has to use minimal
power for reaching the relay. This might also be a realistic
situation since these relay devices may be connected to the
power grid. Regarding the optimal results when the relay may
not always be used, since its power consumption is part of
the objective, they are presented in Fig. 3(b). When the relay
power is Pr=0.5PMAX its presence is more useful at relatively
small distance of the sensor from the FC, i.e., in the range
between 100 and 300 meters. However, after 300 meters it
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(a) Relay is always used.
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Fig. 3. Simulation results.

is more costly to use the relay with Pr=0.5PMAX, and more
efficient to use a relay with Pr=0.3PMAX.

Both these figures provide concrete guidelines with respect
to the strategy that the sensor has to follow, and this has
clear dependence on whether the relay power is used in the
objective. That is, in the first scenario nodes close to the relay
should strive to use it as much as possible regardless of the
relay power. In the second scenario, sensors should also try
to use the relay, but the optimal relay power should be set
depending on the relative distance of the nodes as illustrated
in Fig. 3(b).

B. Results for Multiple Sensors

For a large network we create random WSN instances and
we average the results. The sensors are spread randomly and
uniformly in a circle. In the middle of the circle there is the

relay, while in the edge there is the FC. Then, we solve the
optimization problem by using as inputs the average channel
gains. Subsequently, we configure each sensor with the optimal
power setting, and we simulate the Rayleigh channel.

Due to the random placement of sensor nodes a subset of
them uses the relay and another subset it does not according
to the result of our optimization. When the relay is always
used, in the results of Fig. 3(c) we notice significant reduction
in the sensor transmission power for every configuration of
the relay power. The reason is that the cost of using the
relay is zero in this case and the cooperative transmission
is always the preferred choice. Another important result is
that as the sensor population is increased, we have sharper
increase in transmission power when the power of the relay
is low (e.g., for Pr=0.01PMAX and for 70 sensors or more
the increase is worse than linear). The reason is that the



increased sensor density increases the contention in the IEEE
802.11ah MAC. To meet the distortion constraint, since the
effective communication rate is lower according to (7), higher
transmission power is required to minimize Pout. However, for
higher relay power the phenomenon is not so significant since
the relay can compensate for this behavior and effectively shift
the sharper increase in the transmission power for higher node
densities. For example for Pr=0.1PMAX the increase starts
from 90 nodes. However, if the required MSE is equal to
0.5, then we can afford to have a higher Pout and so lower
transmission power can be used.

In the scenario that the relay selection is applied with
our full-fledged system, the related results are illustrated in
Fig. 3(d) and we present now the total power (i.e., Pi+Pr). We
observe smaller differences in this case since the relay incurs a
cost and hence it is used less frequently. For higher relay power
the cost of using is even more important which means that not
so significant additional benefits can be obtained (consistently
with our results for one sensor). It is also important to see that
unlike the previous paragraph, allowing a more relaxed MSE
threshold does not help significantly since a higher Pout does
not lead to more aggressive use of the relay.

VI. CONCLUSIONS

In this paper we presented a cross-layer model and an opti-
mization framework for minimizing the power consumption of
an IEEE 802.11ah relay-based WSN that executes a distributed
estimation application. Our framework allows the derivation of
the optimal power settings independently for each sensor as a
function of its relative location towards the FC and the relay.
The performance results indicate that deploying such a relay,
even in a randomly deployed sensor population, can lower
significantly the power consumption regardless of whether the
use of the relay itself incurs a power cost or not. Our future
work will include the investigation of different topologies with
larger sensor populations.
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