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Abstract— In this paper we present a number of modifications
to the recently adopted by IETF Stream Control Transmission
Protocol (SCTP), that allow bandwidth aggregation over the
multiple interfaces of a host. We show that it is possible to
implement a number of algorithms for bandwidth aggregation,
with only a small number of modifications to the base SCTP
protocol. Our simulation results clearly depict the efficiency of
our approach in terms of bandwidth utilization. Furthermore, we
implement and evaluate a mechanism for identifying bottlenecks
that are shared by flows from the same aggregate connection. Our
purpose is to show that SCTP is a good candidate for building
a practical protocol for bandwidth aggregation that is fair and
supportive of TCP.

I. INTRODUCTION

Bandwidth was always an immediate metric for the user
perceived QoS. That is why end-user terminals are equipped
today with a number network interfaces (LAN/WLAN) which
in the near future will probably belong to various access
technologies. Ideally, a user would like to use all the available
aggregate bandwidth provided by the available interfaces.
Moreover, service providers require better resource utiliza-
tion for their equipment and one way to achieve this is by
accommodating more users to the same infrastructure. Using
concurrently multiple technology interfaces (aka multiple ac-
cess networks) can be a source of increased revenue for them.
Thus, the problem that formulates is how to use all theses
interfaces in order to obtain the maximum possible bandwidth
in a fashion friendly for the Internet and the dominant TCP
traffic.

In this paper we propose a mechanism for efficient band-
width aggregation (or load-sharing) across the multiple inter-
faces of a multi-homed host. The proposed approach con-
sists of a number of modifications to the Stream Control
Transmission Protocol (SCTP), recently adopted by IETF [1].
This protocol includes a number of novel features, including
support for multi-homing. However, the current SCTP speci-
fication does not implement bandwidth aggregation due to the
difficulty of the problem. We believe that due to SCTP’s novel
features, it has the potential of providing a robust protocol for
practical bandwidth aggregation over the Internet. Our paper
tries to give a first direction towards a practical bandwidth-
aggregation solution based on SCTP that will be able to
operate smoothly over the current Internet. Additionally, we
evaluate a mechanism for solving the most important problem
of a bandwidth aggregation system: TCP-friendliness/fairness
of the aggregate connection even when the sub-flows from

the same host converge to the same bottleneck router. Overall,
our system functionality can be summarized into three key
points: 1) shared bottleneck identification 2) recovery with a
modified congestion control algorithm and 3) tackling out-of-
order delivery of packets due to path asymmetries.

The rest of this paper is organized as follows: In sec-
tion II we give an overview of work related to bandwidth
aggregation and load-sharing. Due to the recent emergence
of SCTP, we provide a brief overview of the protocol in
section III. Section IV provides motivation for our work and
analyzes in detail the problems we are dealing with. The next
section describes in detail our algorithms and the proposed
modifications to SCTP. The algorithm for shared bottleneck
identification and recovery is presented in section VI. Finally
we present simulation results in section VII, while section VIII
concludes the paper.

II. RELATED WORK

A number of application layer techniques for bandwidth
aggregation have been presented [2], [3], [4]. The common
practice at this level is to establish multiple TCP connec-
tions (each one mapped to a different interface) and then
stripe application data according to the available bandwidth
of each link. Bandwidth estimation is performed either pas-
sively (RTT measurements) or actively using probes. These
approaches obviously tradeoff accuracy for wasted bandwidth.
Another major problem is the need of large re-sequencing
buffers in the case of significant mismatch in the available
bandwidth of each link [5]. Recently in [4], was presented a
application layer bandwidth aggregation system, that was built
based on the analytical results presented in earlier work [6].
Their system performs well in identifying shared bottlenecks,
except the case of sources that exhibit bursty traffic patterns.

Moving down to the protocol stack, we find the first trans-
port layer bandwidth aggregation technique being reported
in [7], in the form of a specialized protocol named RMTP. This
protocol is based in the accurate bandwidth estimation of each
path for proper data striping. However, since the bandwidth
estimation accuracy depends largely on the frequency of
probes sent to each path, significant bandwidth is given out for
probing. Recently, Hsieh [5] proposed a modified version of
TCP, called P-TCP, for bandwidth aggregation in mobile multi-
homed hosts. However, the assumption of sub-flows that do
not share a bottleneck limits the applicability of the protocol
in the current Internet. Moreover, the additional requirement
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that applications must be built by being aware of the P-TCP
protocol, poses an additional burden for practically deploying
the proposed system.

A network layer approach was reported in [8]. The au-
thors take a different approach to the problem by defining a
bandwidth aggregation scheme at the network layer (IP). They
claim that their system is transparent to the transport layer and
it aggregates data of a single TCP session over the outgoing
interfaces. The major problem with this approach is that of
packet reordering at the receiver, when a connection spawns
over multiple paths. To solve that, they propose a modification
of the RTO calculation algorithm, which does not consist a
transparent solution for TCP.

III. SCTP OVERVIEW

The Stream Control Transmission Protocol (SCTP) is a reli-
able transport protocol that operates on top of a connectionless
packet based network such as IP. One of the most important
new ideas that SCTP introduces is that of multi-homing. A
single SCTP association (session) is able to use alternatively
anyone of the available IP-addresses without disrupting an
ongoing session. However, this feature is currently used by
SCTP only as a backup mechanism that helps recovering
from link failures. SCTP maintains the state of each IP-
address (path) by sending heartbeat messages and it is thus
able to detect a specific link failure and switch to another IP-
address/interface. Another novel feature is that SCTP decou-
ples reliable delivery from message ordering by introducing
the idea of streams. The stream is an abstraction that allows
applications to preserve in order delivery within a stream
but unordered delivery across streams. This feature avoids
Head-of-Line (HOL) blocking at the receiver in case multiple
independent data streams exist in the same SCTP session.
Congestion control was defined similar to TCP, primarily for
achieving TCP friendliness [1].

IV. PROBLEMS IN THE CONTEXT OF SCTP

Generally, the challenge is how to send a stream of data over
multiple outgoing interfaces in order to take advantage of the
full aggregate bandwidth. The constraint that we have is that
the total aggregate connection must not be more aggressive
than a single connection (TCP-friendly). We identify the fol-
lowing problems that an SCTP-based bandwidth aggregation
mechanism has to face:

A. Packet reordering

Out-of-order delivery of packets at the receiver is actually
common in the Internet today [9]. In our case, the problem
is compounded even more since we intentionally distribute
data that belong to a single data flow over a number of
outgoing interfaces which may actually correspond to highly
asymmetric paths (in terms of delay or bandwidth). Given that
a number of packets, stamped with a Transmission Sequence
Number (TSN) 1, are sent over the interfaces it is clear that
a larger than usual, re-sequencing buffer is needed at the

1Corresponds to TCP’s sequence number.

receiver. Additionally, packet reordering at the receiver results
in the reception of duplicate acknowledgments at the sender.
After four successive duplicate acknowledgments [1], the
sender fast retransmits the missing TSN which may actually
still be buffered, or is in its way at the highest delay link. As
explained in [10], in the case of simple changeover (primary
interface change), the previously described situation may lead
in the worst case to retransmissions equal to the number of
TSN outstanding at the ”slow” link. One additional problem
is congestion window (cwnd) behavior which may not only
erroneously increase as pointed out in [10], but it can much
worst, drastically decrease (halved successively) if the ”slow”
link delays significantly the delivery of the corresponding
TSN’s. This of course has as a side-effect the under-utilization
of the high bandwidth link.

B. TCP-friendliness

Spawning a data flow over a number of outgoing links can
have severe effects over the TCP-friendliness of the protocol
and the fairness of the aggregate connection. Assuming that
we maintain one set of congestion control parameters for each
transport address of the receiver then this may lead to under-
utilization of the aggregate bandwidth since the ”slowest” link
will set back the cwnd of the whole aggregate connection.
The naive solution to this problem which requires congestion
control performed for each specific flow that corresponds to
one interface at the sender, has a major problem. The flows
may share the same bottleneck router and thus contribute to
congestion and ”steal” bandwidth from other TCP flows. What
we would ideally want in this case, is to perform unified
congestion control for the flows that share the bottleneck,
so that the aggregate connection is TCP-friendly. Moreover,
there is another issue that has to be considered: We do not
only require the location of bottleneck routers but also routers
that are simply shared by two flows from the same SCTP
association. This is necessary in order to prevent fairness
problems between other, SCTP/TCP flows.

V. PROPOSED ALGORITHMS

In the next few sections we analyze the number of modifica-
tion performed to the base SCTP protocol. All the subsequent
algorithms are based in one crucial modification that we did:
We do not apply congestion control for each transport address
separately but rather perform a unified congestion control for
flows that share bottleneck (i.e for each flow that corresponds
to a pair of source/destination addresses).

A. Congestion window based data allocation

One crucial difference of our approach compared to related
work, is that a single data flow is distributed to each outgoing
interface, according to the congestion window value of each
specific transport address. We do not use the bandwidth of
each link in order to estimate the amount of data that should
be assigned. The rationale behind this is to fill the bandwidth-
delay product of each link. In this way, we can also solve the
problems that occur when the used links are highly asymmetric
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in delay or bandwidth. In [5], the authors are following a
similar approach for TCP but after they logically separate the
sender in a number separate TCP ”sender entities” in order to
be able to apply congestion control for each link. In our case
we handle all this in a unified way at the base SCTP protocol.
One additional difference is that we maintain data in flight
for all destinations. However, data are assigned to an interface
after we apply congestion control for a particular destination.
In this way data can be sent immediately. By following this
approach, we avoid the need for dynamic data reassignment
in case we have stale data for a particular destination which
has decreased its congestion window.

B. Fast retransmit algorithm modification

Fast retransmit of Gap reports is described in section 7.2.4
of the SCTP RFC [1]. According to this section, when there
is a gap in the TSNs of the received chunks, the receiver will
send a SACK chunk reporting the gap. After reception of four
duplicate acknowledgments (SACKs) [1], the sender will re-
transmit the missing TSN. But as we said in an earlier section,
the receiver will send the SACK over the high bandwidth link
while the ”missing” TSN chunk can still be travelling through
the low bandwidth link. So if the high bandwidth link is a few
times faster when compared with the slower link, the threshold
of four gap reports, will soon reach to an end and the sender
will retransmit the chunk. The sender will also invoke slow-
start [1] and reduce the congestion window, leading thus to
under-utilization of the high bandwidth link [10].

In our case of concurrent link utilization, the problem
becomes even worse: Receiving out of order TSNs will be
the usual case since link delay mismatches is a common
phenomenon. Applying data striping based on the congestion
window value, will not solve the problem [5] and so the
need of a large re-sequencing buffer is immediate. However,
we can eliminate side-effects like spurious retransmission,
and congestion window overgrowth or shrinking. Our system
uses the following technique in order to overcome the above
problems: Each flow that corresponds to a link consists a
separate data pipe which monitors TSN order only for the
packets transmitted in this pipe. This means that even if the
receiver has not received successfully all the TSN’s from a
specific address it will not send a gap report even it identifies
a gap in the received TSN’s. It will only send a gap report
to the original address from which the missing TSN was
sent. Total chunk ordering is provided by the re-sequencing
buffer. Example: if TSNs 10-20 were sent from interface1
of host1 to interface1 of host2, and we observe that TSN
13 is missing at the receiver, then a SACK with gap report
will only be sent to interface1 of host1.

For someone familiar with SCTP, it might look that this
mechanism could be implemented by exploiting the notion
of SCTP streams by mapping a stream to each interface
because in-order delivery is maintained for each of them.
However, we avoid doing that because: 1) SCTP does not
provide a total order mechanism across streams, 2) streams
is an application layer facility which is used by applications

to define more flexible delivery mechanisms, and 3) we might
want to multiplex multiple applications streams at each path.

Implementation details: The sender maintains two variables
that keep the lowest and highest TSN sent during the last
congestion window round to the receiver. When the receiver
replies with a SACK that contains a gap report for TSNs that
do not belong to this range, the sender does not increase
the Gap Ack reports and process the SACK chunk as a
normal SACK that acknowledges the outstanding data for this
transport address. On the meantime the receiver monitors its
CumTSNack and when data are received from a different
interface fill the gap then the receiver stops sending gap
reports.

VI. IDENTIFYING SHARED BOTTLENECKS

As we said in section IV, the most challenging problem in
the bandwidth aggregation scheme, is how to locate a common
congestion point for two flows that each one corresponds to
one outgoing interface of the same host. This problem is
orthogonal with what we have dealt so far. Moreover, even
if the existence of shared routers does not imply a shared
bottleneck, we still want to identify this case as we will later
explain.

Our goal is to built a mechanism at the sender that can
understand when a number of its flows share a common
bottleneck and then apply congestion control in the aggregate
of these flows. In this way the macro-flow that consists of
flows sharing the same bottleneck will have a TCP-friendly
aggregate traffic and the most important: It will be fair with
other flows sharing the same bottleneck. In [11] the authors
were trying to optimize the same problem at one layer above:
They were grouping flows to a macro-flow according to the
outgoing interface.

Given an SCTP association, we are able to define the
flows of interest: Each possible source-destination pair of
addresses/interfaces can be a separate data flow pipe. Our
approach is simple: The sender observes the network packet
delays (each RTT ) and calculates correlation between packets
that belong to different transport addresses. Additionally the
receiver calculates auto-correlation from packets of the same
flow. The general correlation test used is the one found
in [4], [6]:

rxy =
Σ(xi − x)(yi − y)

√
Σ(xi − x)2Σ(yi − y)2

(1)

The y and x variables represent the average value of
packet delays over a period of RTT s (ten in our case).
The correlation tests are performed in terms of delay and
not packet losses, since it has been shown [6], that delay
correlation tests converge much faster. If the cross-correlation
Mx between packet delays of different flows, is larger that the
auto-correlation Ma of one of the flows, then this means that
the flows share a common bottleneck/router. For Mx packet
samples must have difference t > 0 while for Ma it must
be T > t [6]. In addition, delay samples are obtained from
the RTT measurements already available at the base protocol.
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Even though timestamping would assure more accuracy, the
relative gains are small as shown in [4], and for the sake of
simplicity we used the RTT samples.

One additional feature of our algorithm is that it is reactive:
flows that are initially assigned to different interfaces are
assumed not to share a common bottleneck. However, after an
amount of time the algorithm responsible for identifying the
shared bottleneck will respond to a possible shared bottleneck
by ”constructing” a macro-flow that consists of all the flows
sharing the same bottleneck.

Decision for creation of macro-flows take place after a time
T which depends on the number of necessary RTT samples
that must be taken. N RTT samples must have been received
for all the flows, number which is the minimum number of
RTT samples that must be received by a flow so that its
correlation tests are valid. We add a number of 10 more
samples [4], for better accuracy and then the correlation tests
are performed.

VII. SIMULATION RESULTS

The widely used ns-2 simulator was used for our experi-
ments [12]. Additionally we used the SCTP ns-2 module avail-
able at [13]. Here we present representative results concerning
the two operational modes of our system: One set in the
absence of shared bottlenecks and one set of experiments when
there is a shared bottleneck. Clearly, further experimentation
is needed, but due to the lack of space, a small part of the
available results is presented.

A. Without shared bottleneck

We assume the simple network topology of two hosts com-
municating through two non-overlapping paths. Both the links
are 200Kbps, 200ms delay (i.e. they are symmetric). Fig. 1(a)
presents TSN progression at the receiver and acknowledge-
ments at the sender for the unmodified SCTP. In Fig. 1(b) we
present the same network topology but with a sender enhanced
with our bandwidth aggregation modifications. We can clearly
observe that the receiver receives smoothly the TSNs. Note
that in this case we do not use any large re-sequencing buffer
which is possible due to the symmetric links. Moreover, we
can see that the modified SCTP receiver receives nearly double
number of TSNs in the same amount of time.

In the next couple of figures we present results concern-
ing the same simple topology, but with asymmetric links.
We observe that in this asymmetric case, unmodified SCTP
(Fig. 2(a)) operates nearly smoothly with small perturbations.
This is because after changeover it adapts to the delay of the
new link. During our experiments we observed that even with
small asymmetries, SCTP will still have problems resulting in
spurious retransmissions. Our version, with bandwidth aggre-
gation enhancements, also performs smoothly (Fig. 2(b)) with
perfect aggregation efficiency compared to standard SCTP. We
can see that despite the path asymmetries our version of the
protocol is not affected at all.
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(b) SCTP with bandwidth aggregation support

Fig. 1. Sequence number progression at the receiver with symmetric links
(200kbps/200ms)

B. With shared bottleneck

In this sub-section, we present results concerning identifi-
cation and recovery from shared bottlenecks. Due to lack of
space we present a small set of a representative experiments
that depict our approach. We used the topology of Fig. 3. All
the links have parameters 100kbps for bandwidth and 200ms
for delay. We used sources with infinite amount of data. Traffic
routed from the second interface is mixed up with infinite
background TCP traffic. We can see in Fig. 4(a) that packets
coming from the same bottleneck router have similar delay
variation or better: packet arrival times are closely correlated
(lower part of Fig. 4(a) with interfaces 1 and 2). In figure 4(b)
we mixed TCP traffic in the bottleneck router while we
retained the TCP source at the second router. We can see that
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Fig. 2. Sequence number progression at the receiver with asymmetric links
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Fig. 3. Simple topology for simulation with shared bottlenecks
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(b) With background TCP traffic at the bottleneck router

Fig. 4. Intra-packet spacing delay

delay correlation is perturbed and as a result identification
of the shared router becomes more difficult. However, our
system is still able to identify the bottleneck. The time needed
to identify the shared bottlenecks was 7 sec and 10 sec in
Fig. 4(a) and Fig. 4(b) respectively.

Finally in Fig. 5 we present instantaneous throughput at the
receiver in the second case (with background TCP traffic) after
we activated the mechanism for identifying and recovering
from shared bottlenecks. Additionally, in Fig. 5 we can see the
fair bandwidth distribution among the the SCTP/TCP flows.
The system is able to converge after nearly 10 sec as we
previously said.

VIII. CONCLUSIONS

In this paper we proposed a bandwidth aggregation protocol
that may be easily supported via SCTP. The modified protocol
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allows seamless bandwidth aggregation for applications in
the case where a host has number of interfaces. We also
demonstrated the effectiveness of a well known method for
identifying shared bottlenecks, when it is applied in a practical
protocol. However, further study is needed in this area so that
really complex topologies can be handled by the protocol.
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