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Abstract

A methodology for power optimization of the data mem-
ory hierarchy and instruction memory, is introduced. The
impact of the methodology on a set of widely used mul-
timedia application kernels, namely Full Search (FS), Hi-
erarchical Search (HS), Parallel Hierarchical One Dimen-
sion Search (PHODS), and Three Step Logarithmic Search
(3SLS), is demonstrated. We find the power optimal data
memory hierarchy applying the appropriate data-use trans-
Jformation, while the instruction power optimization is done
using suitable cache memory. Using data-reuse trans-
Jformations, performance optimizations techniques, and
instruction-level transformations, we perform exhaustive
exploration of all the possible alternatives to reach power
efficient solutions. Concerning the embedded processor
ARM, the experimental results prove the efficiency of the
methodology in terms of power for all the multimedia ker-
nels.

1. Introduction

In the past, the major concerns of the VLSI engineers
were designing efficient circuits in terms of area and perfor-
mance; power considerations were rarely dealt with. In re-
cent years however, power dissipation has emerged as a sig-
nificant design constraint along with these traditional fac-
tors, and designers have tried to find heuristic approaches
for designing power and area efficient systems. Several
factors have contributed to this attitude change. The most
important factor was the remarkable success and growth of
the class of personal computing devices (portable desktops,
audio and video based multimedia products) and wireless
communications systems (personal digital assistants and
personal communicators) which demand high-speed com-
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putation and complex functionality with low power con-
sumption, since power consumption affects the battery ser-
vice life and weight, cooling requirements, packaging costs
as well as the circuit reliability. There also exists a strong
pressure for producers of high-end products to reduce their
power consumption. For this reasons, power consumption
has emerged as a very significant design constraint, that has
to be tackled, especially in the high levels of design, where
the most significant savings can be achieved [1].

Generally speaking, two possible implementations exist
in order to meet the processing constraints: (¢) that is the
use of a dedicated hardware architecture, and (i) a num-
ber of programmable cores. In particular custom hardware
designs are area and power efficient but they lack of the
flexibility, since it is possible to execute only one algorithm
every time. On the other hand, the programmable cores are
less efficient in terms of power consumption and chip area,
but they are more versatile since they allow us to execute
muttiple algorithms in the same target architecture, and be-
cause design flaws can be casily found and corrected. Of
course, as time-to-market requirements of electronic sys-
tems demand ever faster design cycles, an ever increasing
number of systems are built around a programmable proces-
sor that implements an every increasing amount of function-
ality in firmware running on the processor. Only the most
time-critical tasks need to be implemented in hardware.

In multimedia and other applications that make use of
large multidimensional array type data structures, encrgy
consumption related to memory transfer and storage dom-
inates over the total system energy. Hence, memory op-
timization should have top priority, starting from system
specification and moving down the design flow. As it
was demonstrated in recent studies [2], the memory sys-
tem is the main power consuming unit in multimedia sys-
tems, which is justified by the following reasons: (i) the
data dominated nature of multimedia applications, as it was
stated before, and (4¢) the power consumed in accessing off-
chip memories, which is significant more than normal arith-



metic or logical operations. Thus, it is necessary to perform
hardware and software power optimization techniques, in
order to design a power efficient system.

The problem of designing power and area efficient em-
bedded systems, is rather new and thus, the bibliography is
relatively small [2], [3], [4], [5]. Specifically, Catthour et.
al. [2] proposed a systematic methodology for the reduc-
tion of data memory power consumption in custom archi-
tectures. Zervas et. al [3] presented another research work,
which target single programmable processor-based systems.
Recently, some novel power optimization techniques are
presented in [6], stating for the first time the importance of
the instruction memory power consumption on embedded
systems. Except from the impact of the data memory, em-
bedded systems are characterized by one additional critical
component that has a significant part in the power budget,
which is the instruction memory of the programmable mem-
ory that stores the algorithm to be executed. Some authors
studied the impact of this [4], [5] presenting techniques
of code placement in main memory to maximize instruc-
tion cache hit ratio [4], or partitioning on-chip memory into
scratchpad memory and cache [5], but their targeted only on
the I-cache and I-mem neglecting the D-mem power con-
sumption.

The problem of designing power and area efficient sys-
tems, comprises of two distinct problems: (7) the data
memory optimization using small on-chip memories, and
(#%) the instruction memory optimization using appropriate
caches. In this paper we perform an exhaustive exploration
of data-reuse transformations, performance optimizations
and power transformations, in terms of area, power and per-
formance for multimedia applications executed on embed-
ded cores. After we have found an optimal data memory
hierarchy, we perform instruction power optimization by
using a suitable cache memory. Experimental results, il-
lustrate the efficiency of our proposed methodology.

2. Proposed Methodology

Our target architecture model consists of: (¢) multiple
processing cores, IV, each of which has its individual on-
chip instruction memory, (i¢) instruction cache memory,
and (4i7) data memory hierarchy. This architecture is an
extension of a previous architecture [6], but is extended to
include not only the instruction memory but also it’s corre-
sponding cache. In this paper we analyze the effect of the
Instruction cache (I-cache) in the reduction of the power in-
struction dissipation, for four multimedia kernels executed
on the target architecure with one processing core (N = 1).

The flow of the methodology used is depicted in Fig. 1.
The entry point is a C description of the multimedia ker-
nel. This algorithm is then transformed using high level
software optimization techniques, and is fed to the ARMu-
lator,an ARM processor emulator . According to the used
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data-reuse transformations, we can calculate power and area
of the data memory hierarchy[6]. On the other hand ARMu-
lator can be used to extract a memory access trace which can
be filtered to extract data address information, in order to
use a cache simulator to extract cache statistics. We aim at
the determination of the optimal data memory hierarchy for
reducing power due to a number of off-chips transfers, and
the optimal I-cache memory for reducing instruction mem-
ory power consumption. This problem, regarding the power
consumption estimation, has been divided into two distinct
and equal important tasks, that a designer has to account for:
(7) the corresponding data memory hierarchy (D-Memory),
and (i7) the corresponding instruction memory with the in-
serion or absence of an I-cache. The first task studied in
[6] in detailed manner. Here, we are trying to optimize the
whole memory subsystem of our targer architecture and not
only the data-memory as we did in our previous work.

The methodology proposed here is based on the previ-
ous approach [6], but is extended to include the instruction
memory. In this paper, the exhaustively exploration of both
the instruction cache together with the data memory hierar-
chy is discussed. The motivation to take into consideration
the [-mem was the results obtained from previous work, that
revealed the dominant role of the [-Memory power in the
total memory power budget. Of course, this is valid when
programmable processor cores are assumed.
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Figure 1. The proposed Methodology: Esti-
mation of D-Mem, I-Mem, I-Cache power con-
sumption

2.1. Data Memory Methodology

The first step of our data memory methodology is a set of
software techniques aimed at optimization of the source al-
gorithmic kernel in terms of power, performance and area,
and consists of three types of high level transformations,
namely data-reuse, performance and instruction level trans-



formations. The second step is to map the transformed algo-
rithm to the physical memories, and analyze the efficiency
of the methodology, with the experimental results. For the
sake of completeness a brief analysis of the Data Mem-
ory Methodology follows, while detailed description can be
found in [6].

Employing data reuse transformations [2], we determine
the certain data sets, which are heavily re-used in a short
period of time. The goals of these transformations are to re-
duce the redundancy in data transfers, and to introduce more
locality in the accesses so that more data can be retained in
memory cells in the memory hierarchy closed to the pro-
cessing cores. The re-used data can be stored in smaller on-
chip memories, which require less power per access. In this
way, redundant accesses from large off-chip memories are
transferred on chip, reducing power consumption related to
data transfers. Energy for accessing the memory is reduced
when memory banks are sufficiently small. On the other
hand, a great number of different memories for each data
set results into a significant area penalty, and imposes a se-
vere wiring overhead, which tends to increase communica-
tion energy. For this reason, the data reuse exploration has
to decide which data sets are appropriate to be placed in
separate memory. Here, we applied 21 data-reuse transfor-
mations [3] to all target architecture models for the four ME
kernels.

Another type of transformations applied was the perfor-
mance optimizations, like common sub-expression elimina-
tion, loop optimization, tiling, interchanging, strip mining
etc, that transform a loop for better temporal and spatial lo-
cality for a given cache size. Of course this kind of transfor-
mation has an impact in the instruction power budget. The
tradeoff in this case was between the increase in the instruc-
tions due to the extra assignments in one hand, and the de-
crease in the instructions due to the use of the performance
optimization. Sub-expressions are useful to eliminate when
they have to be executed in a great number of loops. When
the number of loops is small the overhead produced by the
assignment retracts the benefits of the elimination.

The third type of transformations are the instruction level
transformations, which are processor dependent. Every in-
struction dissipates a fixed amount of power, so if we are
able to substitute instructions with high power consump-
tion, with a set of instructions with lower total power con-
sumption, we have a more power efficient algorithm. In-
deed, a program written in high level language, e.g. C, can
be re-written substituting power hungry instructions with
power efficient ones. For example we have found that the
multiply operation in the ARM processor could be substi-
tuted with summation operations.

The final step is the mapping process. For all the data-
memory architectures models a shared background (proba-
bly off-chip) memory module is assumed. Thus, in all cases
special care must be taken during the scheduling of accesses
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to this memory, to avoid violating data-dependencies and to
keep the number of memory ports as small as possible in
order to keep the power per access cost as small as possible.

2.2, Instruction Cache Methodology

One of the drawbacks of the programmable cores is the
fact that the Instruction power consumption, has a signifi-
cant part in the total power budget of the system, which is
a motivation for the designer to try to decrease the I-mem
power dissipation. Our approach to accomplish this task
is by using one appropriate selected [-cache, which will be
analyzed next.

After the data memory methodology has been applied
to the original ME kernel, we have reached to some (in
our case 21) transformed versions of our algorithm. These
transformed algorithms imply the use of a specific data-
memory hierarchy. Having this in mind we make mea-
surements in order to evaluate the performance of the algo-
rithms, in terms of area, power and performance, concern-
ing the data memory hierarchy and the Instruction memory.
The ARMulator environment can produce the exact mem-
ory access trace of the algorithm, in order to investigate the
efficiency of a cache. The memory trace is then filtered
to extract address information. Evaluation of cache statis-
tics requires a cache simulator to account for the dynamic
effects caused by the cache replacement mechanism, dif-
ferent degrees of associativity, write policy etc. For this
reason, the filter transforms the output of the ARM into a
format compatible with the Dinero cache simulator [7], and
statistics are collected for various cache parameters. The
statistics are used as input in the cache model in order to
take measurements concerning power dissipation and chip
area.

One of the disadvantages of the memory address trace of
the ARMulator is the huge trace file that produces, which
is not practical to use in order to extract the statistics using
Dinero, which is executed in a different operating system
too. For example the trace file of the PHODS algorithm,
which has the smaller size comparing to the other three ker-
nels, is 680 MB with over 20.000.000 instructions for the
motion estimation of the limunance component of two con-
sequence QCIF frames (144 x 176). This size includes the
45MB trace with instructions near 1.000.000 for reading the
two frames. In order to analyze 21 transformations of the
four ME kernels, the man’s hours needed would be very
inefficient. If we divide every frame into blocks 16 x16
pixels, 99 blocks are formed, that is 9 blocks for the one
dimension and 11 blocks for the other. The fact that these
algorithms are block based means that the process of calcu-
lating the motion vectors is a recursive task for every block.
Our belief was that we could analyze the trace for some
blocks, and can expect that the statistics remain the same
for the trace of all the blocks, with a low variation. Ex-



perimental results for all the algorithms justified this (Fig.
2 shows indicative results for the PHODS algorithm), and
showed that the statistics for various cache parameters, for
different number of blocks remain nearly unchanged, with
the error fluctuation in the miss rate varies from 0.5% to
1%. For this reason we conducted our measurements for
the I-cache for the derivation of motion estimation vectors
of one block of the current frame only.
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Figure 2. Cache statistics remain the same for
different number of blocks

The combination of the data and instruction memory ex-
ploration/optimization provide a complete approach to the
problem of excessive power consumption in an embedded
system’s memory. In order to take measurements for the I-
cache power consumption we used an abstract cache model
that is described in the next subsection.

2.3. Instruction Cache Model

Several cache models have appeared in the literature, al-
though most of them are intended for performance, rather
than energy estimation [8], [9]. All of these attempts to
describe the power consumption of the cache are based on
the circuit level, because the power dissipation is given as
term of the capacitance, of the switching frequency of the
address bus, the precharging energy etc. Although these
models are accurate and very close to reality, they require
a good knowledge of every specification of the target archi-
tecture, and the mathematic formulas are difficult to use for
high-level power estimation.

In order to measure the power consumption of the I-cache
we used an abstract model of the cache which depend only
on the number of accesses in the cache. The number of ac-
cesses in the cache depends on the miss ratio m, as reported
by the Dinero cache simulation, and the number of accesses
n in the Instruction memory without using the I-cache, as
reported by the ARMulator.

Specifying these two factors we can have an abstract esti-
mation of the accesses in the cache and in the I-mem, which
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are:

1+m)xn
nxm

)
@

The unity in Eq. 1, is justified by the fact that the proces-
sor core “requires” for the specific algorithm n accesses to
the Instruction memory, whether exists or does not exist a
cache. When there is a cache, all the n accesses will come
from the cache. Of course there exist a miss rate of m,
which means that are required m X n accesses into the In-
struction memory, and in consequently m x n accesses into
the cache memory. Summing these, we can calculate the
I-cache accesses to 1 x n +m X n = (1 +m) x n and
the I-mem accesses to m X n. Using Landman’s model,
we can calculate the power consumption of the I-cache and
I-mem, using the formulas of the power disipation of the
RAM model.

The model we described above does not consider the en-
ergy dissipation due to the tag comparators, the steering
logic (such as the internal decoder and the multiplexor), the
cache control logic (used to implement the replacement pol-
icy), or the sense amplifiers, since they are regarded as mi-
nor sources of energy consumption. Therefore, it provides
a lower bound of actual cache memory energy dissipation.
For comparable sizes, cache accesses are intrinsically more
energy-demanding due to the overhead required by the tag
array and tag comparison logic.

Lcache accesses

Imem accesses

3. Experimental results

In order to analyze the effectiveness of the combined I-
mem and D-mem optimization, we used four well-known
ME algorithms, namely: (i) Full Search, (i7) Hierarchical
Search, (4i¢) Parallel Hierarchical One Dimensional Search,
and (iv) Three Step logarithmic [10]. These algorithms are
some of the fundamental multimedia cores that are in use in
many multimedia systems on the consumer electronic mar-
ket. Our experiments were carried out using the luminance
components of QCIF frame (144x176) format. Reference
window was selected to include 15x15 candidate blocks,
while blocks of 16x16 pixels were considered. All these
algorithms calculate the motion vectors of two images, but
they differ in the granularity, the precision and the complex-
ity. Specifically, FS is the most computational expensive
but guarantees finding the optimal motion vectors, HS is
a fast ME scheme that use a combination of search strate-
gies that use both fewer search locations and fewer pixels in
computing the motion vectors, while PHODS and 3SLS be-
long to the class of very fast algorithms that reduce motion-
estimation complexity by reducing the number of search lo-
cations that are used in determining the motion vectors.

The key assumption in our methodology is that memory
locations accessed by a multimedia application executed on



an embedded program are very localized, and for this reason
the use of an I-cache can dramatically improve the power
consumption of the I-mem, because accesses to a wisely se-
lected I-cache are more cost-efficient than accesses to the I-
mem. In order to verify this assumption, we have performed
ME coding with the four kernels on two succesive frames,
and we have collected statistics about data and instruction
memory accesses. ARMulator, a software emulator for core
processors of the ARM family, has been used as a memory
profiler. ARMulator defines an external interface that al-
lows us to provide models, written in C or C++, that can be
simulated on the ARM platform.

Fig. 3 - 6 show the data memory and instruction memory
(without cache) power consumption. Since the later fac-
tor is large, we use appropriate cache memories to achieve
optimal instruction power consumption. Taking into ac-
count the code size of the innermost loop of each ME ker-
nel, we perform measurements for cache memory sizes 128
bytes, 256 bytes and 512 bytes for all transformations. It
is assumed that block line L=2 bytes and degree of asso-
ciativity a=1. Table 1 provides the average power reduc-
tion/increase percentages for all kernels. The optimal solu-
tion for each kernel is shown in separate diagrams for all
data-reuse transformations. Fig. 7 - 10 illustrate the mea-
surements with maximal power reduction, for FS, HS, PH-
ODS and 3SLS.

Algorithm | Cache Memory Size
128 | 256 | 512
FS -21 | -59 -41
HS +7 | -44 -66
PHODS +20 | -12 -35
3SLS 2 | -81 -37

Table 1. The impact of the cache memory on
the total instruction power consumption (-:
denotes power reduction, +:denotes power
increase).

4. Conclusions

A complete methodology for designing power-efficient
embedded systems for ME kernels, was presented. Ap-
plication specific, data-memory hierarchy and instruction
memory, as well as embedded programmable processing
elements, were assumed. The proposed methodology had
two goals: First, to design of an efficient data memory hi-
erarchy, and second to use of a suitable instruction cache
to reduce the heavy impact of the programmable instruc-
tion memory on total power consumption. The experimen-
tal results prove that an effective solution either in terms of
power, can be acquired from the right combination of pro-
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